Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 397
Filtrar
2.
Sci Rep ; 13(1): 19382, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37938241

RESUMEN

Many mammals rely on volatile organic chemical compounds (VOCs) produced by bacteria for their communication and behavior, though little is known about the exact molecular mechanisms or bacterial species that are responsible. We used metagenomic sequencing, mass-spectrometry based metabolomics, and culturing to profile the microbial and volatile chemical constituents of anal gland secretions in twenty-three domestic cats (Felis catus), in attempts to identify organisms potentially involved in host odor production. We found that the anal gland microbiome was dominated by bacteria in the genera Corynebacterium, Bacteroides, Proteus, Lactobacillus, and Streptococcus, and showed striking variation among individual cats. Microbiome profiles also varied with host age and obesity. Metabolites such as fatty-acids, ketones, aldehydes and alcohols were detected in glandular secretions. Overall, microbiome and metabolome profiles were modestly correlated (r = 0.17), indicating that a relationship exists between the bacteria in the gland and the metabolites produced in the gland. Functional analyses revealed the presence of genes predicted to code for enzymes involved in VOC metabolism such as dehydrogenases, reductases, and decarboxylases. From metagenomic data, we generated 85 high-quality metagenome assembled genomes (MAGs). Of importance were four MAGs classified as Corynebacterium frankenforstense, Proteus mirabilis, Lactobacillus johnsonii, and Bacteroides fragilis. They represent strong candidates for further investigation of the mechanisms of volatile synthesis and scent production in the mammalian anal gland.


Asunto(s)
Canal Anal , Microbiota , Gatos , Animales , Metabolómica , Microbiota/genética , Metagenoma , Metaboloma , Mamíferos
3.
Vet Sci ; 10(9)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37756083

RESUMEN

There is growing interest in the application of fecal microbiota transplants (FMTs) in small animal medicine, but there are few published studies that have tested their effects in the domestic cat (Felis catus). Here we use 16S rRNA gene sequencing to examine fecal microbiome changes in 46 domestic cats with chronic digestive issues that received FMTs using lyophilized stool that was delivered in oral capsules. Fecal samples were collected from FMT recipients before and two weeks after the end of the full course of 50 capsules, as well as from their stool donors (N = 10), and other healthy cats (N = 113). The fecal microbiomes of FMT recipients varied with host clinical signs and dry kibble consumption, and shifts in the relative abundances of Clostridium, Collinsella, Megamonas, Desulfovibrio and Escherichia were observed after FMT. Overall, donors shared 13% of their bacterial amplicon sequence variants (ASVs) with FMT recipients and the most commonly shared ASVs were classified as Prevotella 9, Peptoclostridium, Bacteroides, and Collinsella. Lastly, the fecal microbiomes of cats with diarrhea became more similar to the microbiomes of age-matched and diet-matched healthy cats compared to cats with constipation. Overall, our results suggest that microbiome responses to FMT may be modulated by the FMT recipient's initial presenting clinical signs, diet, and their donor's microbiome.

4.
Microbiol Resour Announc ; 12(10): e0060123, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37695121

RESUMEN

We used Hi-C proximity ligation with shotgun sequencing to retrieve metagenome-assembled genomes (MAGs) from the fecal microbiomes of two domestic cats (Felis catus). The genomes were assessed for completeness and contamination, classified taxonomically, and annotated for putative antimicrobial resistance (AMR) genes.

6.
Nat Plants ; 9(8): 1207-1220, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37474781

RESUMEN

Currents are unique drivers of oceanic phylogeography and thus determine the distribution of marine coastal species, along with past glaciations and sea-level changes. Here we reconstruct the worldwide colonization history of eelgrass (Zostera marina L.), the most widely distributed marine flowering plant or seagrass from its origin in the Northwest Pacific, based on nuclear and chloroplast genomes. We identified two divergent Pacific clades with evidence for admixture along the East Pacific coast. Two west-to-east (trans-Pacific) colonization events support the key role of the North Pacific Current. Time-calibrated nuclear and chloroplast phylogenies yielded concordant estimates of the arrival of Z. marina in the Atlantic through the Canadian Arctic, suggesting that eelgrass-based ecosystems, hotspots of biodiversity and carbon sequestration, have only been present there for ~243 ky (thousand years). Mediterranean populations were founded ~44 kya, while extant distributions along western and eastern Atlantic shores were founded at the end of the Last Glacial Maximum (~19 kya), with at least one major refuge being the North Carolina region. The recent colonization and five- to sevenfold lower genomic diversity of the Atlantic compared to the Pacific populations raises concern and opportunity about how Atlantic eelgrass might respond to rapidly warming coastal oceans.


Asunto(s)
Ecosistema , Zosteraceae , Zosteraceae/genética , Canadá , Filogeografía , Océanos y Mares
7.
Res Sq ; 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37214811

RESUMEN

Animals rely on volatile chemical compounds for their communication and behavior. Many of these compounds are sequestered in endocrine and exocrine glands and are synthesized by anaerobic microbes. While the volatile organic compound (VOC) or microbiome composition of glandular secretions has been investigated in several mammalian species, few have linked specific bacterial taxa to the production of volatiles or to specific microbial gene pathways. Here, we use metagenomic sequencing, mass-spectrometry based metabolomics, and culturing to profile the microbial and volatile chemical constituents of anal gland secretions in twenty-three domestic cats (Felis catus), in attempts to identify organisms potentially involved in host odor production. We found that the anal gland microbiome was dominated by bacteria in the genera Corynebacterium, Bacteroides, Proteus, Lactobacillus, and Streptococcus, and showed striking variation among individual cats. Microbiome profiles also varied with host age and obesity. Metabolites such as fatty-acids, ketones, aldehydes and alcohols were detected in glandular secretions. Overall, microbiome and metabolome profiles were modestly correlated (r=0.17), indicating that a relationship exists between the bacteria in the gland and the metabolites produced in the gland. Functional analyses revealed the presence of genes predicted to code for enzymes involved in VOC metabolism such as dehydrogenases, reductases, and decarboxylases. From metagenomic data, we generated 85 high-quality metagenome assembled genomes (MAGs). Of these, four were inferred to have high relative abundance in metagenome profiles and had close relatives that were recovered as cultured isolates. These four MAGs were classified as Corynebacterium frankenforstense, Proteus mirabilis, Lactobacillus johnsonii, and Bacteroides fragilis. They represent strong candidates for further investigation of the mechanisms of volatile synthesis and scent production in the mammalian anal gland.

8.
Microb Genom ; 9(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37052581

RESUMEN

Violacein is a water-insoluble violet pigment produced by various Gram-negative bacteria. The compound and the bacteria that produce it have been gaining attention due to the antimicrobial and proposed antitumour properties of violacein and the possibility that strains producing it may have broad industrial uses. Bacteria that produce violacein have been isolated from diverse environments including fresh and ocean waters, glaciers, tropical soils, trees, fish and the skin of amphibians. We report here the isolation and characterization of six violacein-producing bacterial strains and three non-violacein-producing close relatives, each isolated from either an aquatic environment or moist food materials in northern California, USA. For each isolate, we characterized traditional phenotypes, generated and analysed draft genome sequences, and carried out multiple types of taxonomic, phylogenetic and phylogenomic analyses. Based on these analyses we assign putative identifications to the nine isolates, which include representatives of the genera Chromobacterium, Aquitalea, Iodobacter, Duganella, Massilia and Janthinobacterium. In addition, we discuss the utility of various metrics for taxonomic assignment in these groups including average nucleotide identity, whole genome phylogenetic analysis and extent of recent homologous recombination using the software program PopCOGenT.


Asunto(s)
Antiinfecciosos , Bacterias , Animales , Filogenia , Secuencia de Bases , Bacterias Gramnegativas
9.
Microbiol Resour Announc ; 12(3): e0101122, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36840549

RESUMEN

Whole-genome sequencing can be used to better understand and assess the functional abilities of microorganisms isolated from spacecraft hardware and associated surfaces for planetary protection (PP) purposes. We sequenced 191 isolates from 6 spaceflight missions with PP requirements and identified them using Illumina-based sequencing methods and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry.

10.
J Immunother Cancer ; 11(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36599469

RESUMEN

BACKGROUND: Groundbreaking studies have linked the gut microbiome with immune homeostasis and antitumor immune responses. Mounting evidence has also demonstrated an intratumoral microbiome, including in soft tissue sarcomas (STS), although detailed characterization of the STS intratumoral microbiome is limited. We sought to characterize the intratumoral microbiome in patients with STS undergoing preoperative radiotherapy and surgery, hypothesizing the presence of a distinct intratumoral microbiome with potentially clinically significant microbial signatures. METHODS: We prospectively obtained tumor and stool samples from adult patients with non-metastatic STS using a strict sterile collection protocol to minimize contamination. Metagenomic classification was used to estimate abundance using genus and species taxonomic levels across all classified organisms, and data were analyzed with respect to clinicopathologic factors. RESULTS: Fifteen patients were enrolled. Most tumors were located at an extremity (67%) and were histologic grade 3 (87%). 40% were well-differentiated/dedifferentiated liposarcoma histology. With a median follow-up of 24 months, 4 (27%) patients developed metastases, and 3 (20%) died. Despite overwhelming human DNA (>99%) intratumorally, we detected a small but consistent proportion of bacterial DNA (0.02-0.03%) in all tumors, including Proteobacteria, Bacteroidetes, and Firmicutes, as well as viral species. In the tumor microenvironment, we observed a strong positive correlation between viral relative abundance and natural killer (NK) infiltration, and higher NK infiltration was associated with superior metastasis-free and overall survival by immunohistochemical, flow cytometry, and multiplex immunofluorescence analyses. CONCLUSIONS: We prospectively demonstrate the presence of a distinct and measurable intratumoral microbiome in patients with STS at multiple time points. Our data suggest that the STS tumor microbiome has prognostic significance with viral relative abundance associated with NK infiltration and oncologic outcome. Additional studies are warranted to further assess the clinical impact of these findings.


Asunto(s)
Sarcoma , Neoplasias de los Tejidos Blandos , Adulto , Humanos , Viroma , Sarcoma/genética , Pronóstico , Extremidades/patología , Células Asesinas Naturales , Microambiente Tumoral
11.
Nature ; 613(7945): 639-649, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36697862

RESUMEN

Whether the human fetus and the prenatal intrauterine environment (amniotic fluid and placenta) are stably colonized by microbial communities in a healthy pregnancy remains a subject of debate. Here we evaluate recent studies that characterized microbial populations in human fetuses from the perspectives of reproductive biology, microbial ecology, bioinformatics, immunology, clinical microbiology and gnotobiology, and assess possible mechanisms by which the fetus might interact with microorganisms. Our analysis indicates that the detected microbial signals are likely the result of contamination during the clinical procedures to obtain fetal samples or during DNA extraction and DNA sequencing. Furthermore, the existence of live and replicating microbial populations in healthy fetal tissues is not compatible with fundamental concepts of immunology, clinical microbiology and the derivation of germ-free mammals. These conclusions are important to our understanding of human immune development and illustrate common pitfalls in the microbial analyses of many other low-biomass environments. The pursuit of a fetal microbiome serves as a cautionary example of the challenges of sequence-based microbiome studies when biomass is low or absent, and emphasizes the need for a trans-disciplinary approach that goes beyond contamination controls by also incorporating biological, ecological and mechanistic concepts.


Asunto(s)
Biomasa , Contaminación de ADN , Feto , Microbiota , Animales , Femenino , Humanos , Embarazo , Líquido Amniótico/inmunología , Líquido Amniótico/microbiología , Mamíferos , Microbiota/genética , Placenta/inmunología , Placenta/microbiología , Feto/inmunología , Feto/microbiología , Reproducibilidad de los Resultados
12.
mSystems ; 8(1): e0096522, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36533929

RESUMEN

The gut microbiome provides vital functions for mammalian hosts, yet research on its variability and function across adult life spans and multiple generations is limited in large mammalian carnivores. Here, we used 16S rRNA gene and metagenomic high-throughput sequencing to profile the bacterial taxonomic composition, genomic diversity, and metabolic function of fecal samples collected from 12 wild spotted hyenas (Crocuta crocuta) residing in the Masai Mara National Reserve, Kenya, over a 23-year period spanning three generations. The metagenomic data came from four of these hyenas and spanned two 2-year periods. With these data, we determined the extent to which host factors predicted variation in the gut microbiome and identified the core microbes present in the guts of hyenas. We also investigated novel genomic diversity in the mammalian gut by reporting the first metagenome-assembled genomes (MAGs) for hyenas. We found that gut microbiome taxonomic composition varied temporally, but despite this, a core set of 14 bacterial genera were identified. The strongest predictors of the microbiome were host identity and age, suggesting that hyenas possess individualized microbiomes and that these may change with age during adulthood. The gut microbiome functional profiles of the four adult hyenas were also individual specific and were associated with prey abundance, indicating that the functions of the gut microbiome vary with host diet. We recovered 149 high-quality MAGs from the hyenas' guts; some MAGs were classified as taxa previously reported for other carnivores, but many were novel and lacked species-level matches to genomes in existing reference databases. IMPORTANCE There is a gap in knowledge regarding the genomic diversity and variation of the gut microbiome across a host's life span and across multiple generations of hosts in wild mammals. Using two types of sequencing approaches, we found that although gut microbiomes were individualized and temporally variable among hyenas, they correlated similarly to large-scale changes in the ecological conditions experienced by their hosts. We also recovered 149 high-quality MAGs from the hyena gut, greatly expanding the microbial genome repertoire known for hyenas, carnivores, and wild mammals in general. Some MAGs came from genera abundant in the gastrointestinal tracts of canid species and other carnivores, but over 80% of MAGs were novel and from species not previously represented in genome databases. Collectively, our novel body of work illustrates the importance of surveying the gut microbiome of nonmodel wild hosts, using multiple sequencing methods and computational approaches and at distinct scales of analysis.


Asunto(s)
Carnívoros , Microbioma Gastrointestinal , Hyaenidae , Animales , Microbioma Gastrointestinal/genética , Hyaenidae/genética , ARN Ribosómico 16S/genética , Carnívoros/genética , Metagenómica
13.
Vet Sci ; 9(11)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36423084

RESUMEN

Here, we present a taxonomically defined fecal microbiome dataset for healthy domestic cats (Felis catus) fed a range of commercial diets. We used this healthy reference dataset to explore how age, diet, and living environment correlate with fecal microbiome composition. Thirty core bacterial genera were identified. Prevotella, Bacteroides, Collinsella, Blautia, and Megasphaera were the most abundant, and Bacteroides, Blautia, Lachnoclostridium, Sutterella, and Ruminococcus gnavus were the most prevalent. While community composition remained relatively stable across different age classes, the number of core taxa present decreased significantly with age. Fecal microbiome composition varied with host diet type. Cats fed kibble had a slightly, but significantly greater number of core taxa compared to cats not fed any kibble. The core microbiomes of cats fed some raw food contained taxa not as highly prevalent or abundant as cats fed diets that included kibble. Living environment also had a large effect on fecal microbiome composition. Cats living in homes differed significantly from those in shelters and had a greater portion of their microbiomes represented by core taxa. Collectively our work reinforces the findings that age, diet, and living environment are important factors to consider when defining a core microbiome in a population.

14.
mSphere ; 7(6): e0017722, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36218344

RESUMEN

Environmental monitoring of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for research and public health purposes has grown exponentially throughout the coronavirus disease 2019 (COVID-19) pandemic. Monitoring wastewater for SARS-CoV-2 provides early warning signals of virus spread and information on trends in infections at a community scale. Indoor environmental monitoring (e.g., swabbing of surfaces and air filters) to identify potential outbreaks is less common, and the evidence for its utility is mixed. A significant challenge with surface and air filter monitoring in this context is the concern of "relic RNA," noninfectious RNA found in the environment that is not from recently deposited virus. Here, we report detection of SARS-CoV-2 RNA on surfaces in an isolation unit (a university dorm room) for up to 8 months after a COVID-19-positive individual vacated the space. Comparison of sequencing results from the same location over two time points indicated the presence of the entire viral genome, and sequence similarity confirmed a single source of the virus. Our findings highlight the need to develop approaches that account for relic RNA in environmental monitoring. IMPORTANCE Environmental monitoring of SARS-CoV-2 is rapidly becoming a key tool in infectious disease research and public health surveillance. Such monitoring offers a complementary and sometimes novel perspective on population-level incidence dynamics relative to that of clinical studies by potentially allowing earlier, broader, more affordable, less biased, and less invasive identification. Environmental monitoring can assist public health officials and others when deploying resources to areas of need and provides information on changes in the pandemic over time. Environmental surveillance of the genetic material of infectious agents (RNA and DNA) in wastewater became widely applied during the COVID-19 pandemic. There has been less research on other types of environmental samples, such as surfaces, which could be used to indicate that someone in a particular space was shedding virus. One challenge with surface surveillance is that the noninfectious genetic material from a pathogen (e.g., RNA from SARS-CoV-2) may be detected in the environment long after an infected individual has left the space. This study aimed to determine how long SARS-CoV-2 RNA could be detected in a room after a COVID-positive person had been housed there.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/genética , ARN Viral/genética , Aguas Residuales , Pandemias
15.
Front Immunol ; 13: 983344, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36032113

RESUMEN

The microbiome has clearly been established as a cutting-edge field in tumor immunology and immunotherapy. Growing evidence supports the role of the microbiome in immune surveillance, self-tolerance, and response to immune checkpoint inhibitors such as anti PD-L1 and CTLA-4 blockade (1-6). Moreover, recent studies including those using fecal microbial transplantation (FMT) have demonstrated that response to checkpoint immunotherapies may be conferred or eliminated through gut microbiome modulation (7, 8). Consequently, studies evaluating microbiota-host immune and metabolic interactions remain an area of high impact research. While observations in murine models have highlighted the importance of the microbiome in response to therapy, we lack sufficient understanding of the exact mechanisms underlying these interactions. Furthermore, mouse and human gut microbiome composition may be too dissimilar for discovery of all relevant gut microbial biomarkers. Multiple cancers in dogs, including lymphoma, high grade gliomas, melanomas and osteosarcoma (OSA) closely resemble their human analogues, particularly in regard to metastasis, disease recurrence and response to treatment. Importantly, dogs with these spontaneous cancers also have intact immune systems, suggesting that microbiome analyses in these subjects may provide high yield information, especially in the setting of novel immunotherapy regimens which are currently expanding rapidly in canine comparative oncology (9, 10). Additionally, as onco-microbiotic therapies are developed to modify gut microbiomes for maximal responsiveness, large animal models with intact immune systems will be useful for trialing interventions and monitoring adverse events. Together, pre-clinical mechanistic studies and large animal trials can help fully unlock the potential of the microbiome as a diagnostic and therapeutic target in cancer.


Asunto(s)
Neoplasias Óseas , Microbiota , Animales , Ensayos Clínicos como Asunto , Modelos Animales de Enfermedad , Perros , Humanos , Factores Inmunológicos , Inmunoterapia , Ratones , Recurrencia Local de Neoplasia
16.
Commun Biol ; 5(1): 770, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35908086

RESUMEN

Environmental degradation has the potential to alter key mutualisms that underlie the structure and function of ecological communities. How microbial communities associated with fishes vary across populations and in relation to habitat characteristics remains largely unknown despite their fundamental roles in host nutrition and immunity. We find significant differences in the gut microbiome composition of a facultative coral-feeding butterflyfish (Chaetodon capistratus) across Caribbean reefs that differ markedly in live coral cover (∼0-30%). Fish gut microbiomes were significantly more variable at degraded reefs, a pattern driven by changes in the relative abundance of the most common taxa potentially associated with stress. We also demonstrate that fish gut microbiomes on severely degraded reefs have a lower abundance of Endozoicomonas and a higher diversity of anaerobic fermentative bacteria, which may suggest a less coral dominated diet. The observed shifts in fish gut bacterial communities across the habitat gradient extend to a small set of potentially beneficial host associated bacteria (i.e., the core microbiome) suggesting essential fish-microbiome interactions may be vulnerable to severe coral degradation.


Asunto(s)
Antozoos , Microbioma Gastrointestinal , Microbiota , Animales , Bacterias/genética , Peces
17.
ISME J ; 16(8): 1921-1931, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35459792

RESUMEN

The plasticity of bacterial and archaeal genomes makes examining their ecological and evolutionary dynamics both exciting and challenging. The same mechanisms that enable rapid genomic change and adaptation confound current approaches for recovering complete genomes from metagenomes. Here, we use strain-specific patterns of DNA methylation to resolve complex bacterial genomes from long-read metagenomic data of a marine microbial consortium, the "pink berries" of the Sippewissett Marsh (USA). Unique combinations of restriction-modification (RM) systems encoded by the bacteria produced distinctive methylation profiles that were used to accurately bin and classify metagenomic sequences. Using this approach, we finished the largest and most complex circularized bacterial genome ever recovered from a metagenome (7.9 Mb with >600 transposons), the finished genome of Thiohalocapsa sp. PB-PSB1 the dominant bacteria in the consortia. From genomes binned by methylation patterns, we identified instances of horizontal gene transfer between sulfur-cycling symbionts (Thiohalocapsa sp. PB-PSB1 and Desulfofustis sp. PB-SRB1), phage infection, and strain-level structural variation. We also linked the methylation patterns of each metagenome-assembled genome with encoded DNA methyltransferases and discovered new RM defense systems, including novel associations of RM systems with RNase toxins.


Asunto(s)
Metagenoma , Metagenómica , Bacterias/genética , Genoma Bacteriano , Metilación
18.
PLoS One ; 17(4): e0267212, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35452479

RESUMEN

Testing surfaces in school classrooms for the presence of SARS-CoV-2, the virus that causes COVID-19, can provide public-health information that complements clinical testing. We monitored the presence of SARS-CoV-2 RNA in five schools (96 classrooms) in Davis, California (USA) by collecting weekly surface-swab samples from classroom floors and/or portable high-efficiency particulate air (HEPA) units (n = 2,341 swabs). Twenty-two surfaces tested positive, with qPCR cycle threshold (Ct) values ranging from 36.07-38.01. Intermittent repeated positives in a single room were observed for both floor and HEPA filter samples for up to 52 days, even following regular cleaning and HEPA filter replacement after a positive result. We compared the two environmental sampling strategies by testing one floor and two HEPA filter samples in 57 classrooms at Schools D and E. HEPA filter sampling yielded 3.02% and 0.41% positivity rates per filter sample collected for Schools D and E, respectively, while floor sampling yielded 0.48% and 0% positivity rates. Our results indicate that HEPA filter swabs are more sensitive than floor swabs at detecting SARS-CoV-2 RNA in interior spaces. During the study, all schools were offered weekly free COVID-19 clinical testing through Healthy Davis Together (HDT). HDT also offered on-site clinical testing in Schools D and E, and upticks in testing participation were observed following a confirmed positive environmental sample. However, no confirmed COVID-19 cases were identified among students associated with classrooms yielding positive environmental samples. The positive samples detected in this study appeared to contain relic viral RNA from individuals infected before the monitoring program started and/or RNA transported into classrooms via fomites. High-Ct positive results from environmental swabs detected in the absence of known active infections supports this conclusion. Additional research is needed to differentiate between fresh and relic SARS-CoV-2 RNA in environmental samples and to determine what types of results should trigger interventions.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/prevención & control , Polvo , Monitoreo del Ambiente , Humanos , ARN Viral/genética , SARS-CoV-2/genética , Instituciones Académicas
19.
Vet Med Sci ; 8(3): 1049-1055, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35060350

RESUMEN

BACKGROUND: Trigeminal-mediated headshaking (TMHS) in horses is a form of neuropathic pain of undetermined cause that often results in euthanasia. The role of microbiota in TMHS has not been investigated in diseased horses. OBJECTIVE: To investigate if gastrointestinal microbiota in the cecum is different in horses with TMHS compared to a control population, during a summer season with clinical manifestations of disease. ANIMALS: Ten castrated horses: five with TMHS and five neurologically normal controls. METHODS: All horses were sourced from our institution and kept under the same husbandry and dietary conditions. All horses were fed orchard grass hay for 30 days and then were euthanized due to chronic untreatable conditions including TMHS and orthopedic disease (control group). Caecal samples for microbiota analysis were collected within 20 min after euthanasia. Sequencing was performed using an Illumina MiSeq platform and the microbiome was analyzed. RESULTS: The caecal microbiota of horses with TMHS was similar to control horses in terms of diversity but differed significantly with Methanocorpusculum spp. having higher abundance in horses with TMHS.  CONCLUSIONS AND CLINICAL IMPORTANCE: Methanocorpusculum spp. was more abundant in the cecum of horses with TMHS. However, its role in disease is unknown. Furthermore, it could also represent an incidental finding due to our small population size.


Asunto(s)
Enfermedades de los Caballos , Microbiota , Animales , Ciego , Dieta/veterinaria , Caballos , Estaciones del Año
20.
PLoS One ; 17(1): e0259889, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35045086

RESUMEN

The prevalence of overweight and obesity is greatest amongst Black women in the U.S., contributing to disproportionately higher type 2 diabetes prevalence compared to White women. Insulin resistance, independent of body mass index, tends to be greater in Black compared to White women, yet the mechanisms to explain these differences are not completely understood. The gut microbiome is implicated in the pathophysiology of obesity, insulin resistance and cardiometabolic disease. Only two studies have examined race differences in Black and White women, however none characterizing the gut microbiome based on insulin sensitivity by race and sex. Our objective was to determine if gut microbiome profiles differ between Black and White women and if so, determine if these race differences persisted when accounting for insulin sensitivity status. In a pilot cross-sectional analysis, we measured the relative abundance of bacteria in fecal samples collected from a subset of 168 Black (n = 94) and White (n = 74) women of the National Growth and Health Study (NGHS). We conducted analyses by self-identified race and by race plus insulin sensitivity status (e.g. insulin sensitive versus insulin resistant as determined by HOMA-IR). A greater proportion of Black women were classified as IR (50%) compared to White women (30%). Alpha diversity did not differ by race nor by race and insulin sensitivity status. Beta diversity at the family level was significantly different by race (p = 0.033) and by the combination of race plus insulin sensitivity (p = 0.038). Black women, regardless of insulin sensitivity, had a greater relative abundance of the phylum Actinobacteria (p = 0.003), compared to White women. There was an interaction between race and insulin sensitivity for Verrucomicrobia (p = 0.008), where among those with insulin resistance, Black women had four fold higher abundance than White women. At the family level, we observed significant interactions between race and insulin sensitivity for Lachnospiraceae (p = 0.007) and Clostridiales Family XIII (p = 0.01). Our findings suggest that the gut microbiome, particularly lower beta diversity and greater Actinobacteria, one of the most abundant species, may play an important role in driving cardiometabolic health disparities of Black women, indicating an influence of social and environmental factors on the gut microbiome.


Asunto(s)
Resistencia a la Insulina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...